Skip to main content

Correction of Genetic Blood Defects by Gene Transfer

  • Chapter
Principles of Molecular Medicine

Abstract

Gene therapy has been proposed as an appealing tool for introducing a normal gene into affected hematopoietic stem cells to correct their inherited defect. Theoretically, in the absence of a related human leukocyte antigen identical donor, gene therapy could be an alternative given the accessibility and the information available on the hematopoietic stem cell biology. This chapter describes the progress and limits of the gene therapy approach applied to some genetic blood defects that appear to be good targets for this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002;296:2410–2413.

    Article  PubMed  CAS  Google Scholar 

  • Aiuti A, Vai S, Mortellaro A, et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002;8:423–425.

    Article  PubMed  CAS  Google Scholar 

  • Antoine C, Muller S, Cant A, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet 2003;361:553–560.

    Article  PubMed  Google Scholar 

  • Badour K, Zhang J, Siminovitch KA. The Wiskott-Aldrich syndrome protein: forging the link between actin and cell activation. Immunol Rev 2003; 192: 98–112.

    Article  PubMed  CAS  Google Scholar 

  • Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 1995; 270: 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Bordignon C, Notarangelo LD, Nobili N, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995; 270: 470–475.

    Article  PubMed  CAS  Google Scholar 

  • Buckley RH, Schiff SE, Schiff RI, et al. Haploidentical bone marrow stem cell transplantation in human severe combined immunodeficiency. SeminHematol 1993; 30: 92–104.

    CAS  Google Scholar 

  • Buckley RH, Schiff SE, Schiff RI, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 1999; 340: 508–516.

    Article  PubMed  CAS  Google Scholar 

  • Bunting KD, Sangster MY, Ihle JN, Sorrentino BP. Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat Med 1998; 4: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Candotti F, Facchetti F, Blanzuoli L, Stewart DM, Nelson DL, Blaese RM. Retrovirus-mediated WASP gene transfer corrects defective actin polymerization in B cell lines from Wiskott-Aldrich syndrome patients carrying’ null’ mutations. Gene Ther 1999; 6: 1170–1174.

    Article  PubMed  CAS  Google Scholar 

  • Candotti F, Johnston JA, Puck JM, Sugamura K, O’ Shea JJ, Blaese RM. Retroviral-mediated gene correction for X-linked severe combined immunodeficiency. Blood 1996; 87: 3097–3102.

    PubMed  CAS  Google Scholar 

  • Candotti F, Notarangelo L, Visconti R, O’ Shea J. Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. J Clin Invest 2002; 109: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Role of inter-leukin-2 (IL-2), IL-7, and IL-15 in natural killer cell differentiation from cord blood hematopoietic progenitor cells and from gamma c transduced severe combined immunodeficiency X1 bone marrow cells. Blood 1996; 88: 3901–3909.

    PubMed  CAS  Google Scholar 

  • Devriendt K, Kim AS, Mathijs G, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001; 27: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Cavazzana-Calvo M, De Saint Basile G, et al. Naturally occurring primary deficiencies of the immune system. Annu Rev Immunol 1997; 15: 93–124.

    Article  PubMed  CAS  Google Scholar 

  • Galimi F, Noll M, Kanazawa Y, et al. Gene therapy of Fanconi anemia: Preclinical efficacy using lentiviral vectors. Blood 2002; 100: 2732–2736.

    Article  PubMed  CAS  Google Scholar 

  • Gregory JJ Jr, Wagner JE, Verlander PC, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lympho-hematopoietic stem cells. Proc Natl Acad Sci USA 2001;98: 2532–2537.

    Article  PubMed  CAS  Google Scholar 

  • Grompe M, D’Andrea A. Fanconi anemia and DNA repair. Hum Mol Genet 2001; 10: 2253–2259.

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey H, Cavazzana-Calvo M, Le Deist F, et al. gamma-c gene transfer into SCID X1 patients’ B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood 1996; 87: 3108–3116.

    PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  • Haddad E, Le Deist F, Aucouturier P, et al. Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: a single-center study of 22 patients. Blood 1999; 94: 2923–2930.

    PubMed  CAS  Google Scholar 

  • Hershfield MS. Adenosine deaminase deficiency: clinical expression, molecular basis, and therapy. Semin Hematol 1998; 35: 291–298.

    PubMed  CAS  Google Scholar 

  • Hoogerbrugge PM, van Beusechem VW, Fischer A, et al. Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Ther 1996; 3: 179–183.

    PubMed  CAS  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297: 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Imren S, Payen E, Westerman KA, et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci USA 2002; 99: 14, 380–14,385.

    Article  CAS  Google Scholar 

  • Joenje H, Patel The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001; 2: 446–457.

    Article  PubMed  CAS  Google Scholar 

  • Jones GE, Zicha Dunn GA, Blundell M, Thrasher A. Restoration of podosomes and chemotaxis in Wiskott-Aldrich syndrome macro-phages following induced expression of WASp. Int J Biochem Cell Biol 2002; 34:806–815.

    Article  PubMed  CAS  Google Scholar 

  • Kalberer CP, Pawliuk R, Imren S, et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci USA 2000; 97: 5411–5415.

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Nguyen D, Liu CH, et al. Gene therapy for Wiskott-Aldrich syndrome: rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in ice. Blood 2003; 101: 2159–2166.

    Article  PubMed  CAS  Google Scholar 

  • Kohn DB, Hershfield MS, Carbonaro D, et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autolo-ai]gous umbilical cord blood CD34+cells in ADA-deficient SCID neonates. Nat Med 1998; 4: 775–780.

    Article  PubMed  CAS  Google Scholar 

  • Koka R, Burkett PR, Chien M, et al. Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 2003; 197: 977–984.

    Article  PubMed  CAS  Google Scholar 

  • Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003; 101: 1249–1256.

    Article  PubMed  CAS  Google Scholar 

  • Lacout C, Haddad E, Sabri S, et al. A defect in hematopoietic stem cell migration explains the non-random X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome. Blood 2003; 1:1.

    Google Scholar 

  • Leboulch P, Huang GM, Humphries RK, et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J 1994; 13: 3065–3076.

    PubMed  CAS  Google Scholar 

  • Marchand JB, Kaiser DA, Pollard TD, Higgs HN. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol 2001; 3: 76–82.

    Article  PubMed  CAS  Google Scholar 

  • May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000; 406: 82–86.

    Article  PubMed  CAS  Google Scholar 

  • May C, Rivella S, Chadburn A, Sadelain M. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood 2002; 99: 1902–1908.

    Article  PubMed  CAS  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Otsu M, Anderson SM, Bodine DM, Puck JM, O’Shea JJ, Candotti F. Lymphoid development and function in X-linked severe combined immunodeficiency mice after stem cell gene therapy. Mol Ther 2000; 1: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294: 2368–2371.

    Article  PubMed  CAS  Google Scholar 

  • Persons DA, Allay ER, Sawai N, et al. Successful treatment of murine ta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 2003; 102: 506–513.

    Google Scholar 

  • Prlic M, Blazar BR, Farrar MA, Jameson SC. In vivo survival and homeo-static proliferation of natural killer cells. J Exp Med 2003; 197: 967–976.

    Article  PubMed  CAS  Google Scholar 

  • Rabbitts TH. Chromosomal translocation master genes, mouse models and experimental therapeutics. Oncogene 2001; 20: 5763–5777.

    Article  PubMed  CAS  Google Scholar 

  • Rivella S, Sadelain M. Genetic treatment of severe hemoglobinopathies: The combat against transgene variegation and transgene silencing. SeminHematol 1998; 35: 112–125.

    CAS  Google Scholar 

  • Rivella S, May C, Chadburn A, Riviere I, Sadelain M. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 2003;101: 2932–2939.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood 2003; 101: 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Sadelain M, Wang CH, Antoniou M, Grosveld F, Mulligan RC. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci USA 1995; 92: 6728–6732.

    Article  PubMed  CAS  Google Scholar 

  • Samakoglu S, Fattori E, Lamartina S, et al. betaMinor-globin messenger RNA accumulation in reticulocytes governs improved erythropoiesis in beta thalassemic mice after erythropoietin complementary DNA electrotransfer in muscles. Blood 2001; 97: 2213–2220.

    Article  PubMed  CAS  Google Scholar 

  • Sarzotti M, Patel DD, Li X, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol 2003; 170: 2711–2718.

    PubMed  CAS  Google Scholar 

  • Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 1999; 17::905–929

    Article  PubMed  CAS  Google Scholar 

  • Snapper SB, Rosen FS, Mizogiuti A, Slavin S

    Google Scholar 

  • uchi E, et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell acti-vation. Immunity 1998; 9: 81-Bunting KD,91.

    Google Scholar 

  • Soudais C, Shiho T, Sharara LI, et al. Stable and functional lymphoid reconstitution of common cytokine receptor gamma chain deficient mice by retroviral-mediated gene transfer. Blood 2000; 95: 3071–3077.

    PubMed  CAS  Google Scholar 

  • Strom TS, Gabbard W, Kelly PF, Cunningham JM, Nienhuis AW. Functional correction of T cells derived from patients with the Wiskott-Aldrich syndrome (WAS) by transduction with an oncoretro-viral vector encoding the WAS protein. Gene Ther 2003; 10: 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitu-tional survey of the Wiskott-Aldrich syndrome. J Pediatr 1994; 125: 876–885.

    Article  PubMed  CAS  Google Scholar 

  • Thrasher AJ. WASp in immune-system organization and function. Nat Rev Immunol 2002; 2: 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Jagadeesh GJ, Nelson DL, Candotti F. Retrovirus-mediated WASP gene transfer corrects Wiskott-Aldrich syndrome T-cell dysfunction. Hum Gene Ther 2002; 13: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Konno A, Schurman SH, et al. Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings J Clin Invest 2003; 111: 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Schurman SH, Otsu M, et al. Somatic mosaicism in WiskottAldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA 2001; 98: 8697–8702.

    Article  PubMed  CAS  Google Scholar 

  • Yates F, Malassis-Seris M, Stockholm D, et al. Gene therapy of RAG-2-/-mice: Sustained correction of the immunodeficiency. Blood 2002; 100: 3942–3949.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Cavazzana-Calvo, M., Hacein-Bey-Abina, S., Thrasher, A.J., Leboulch, P., Fischer, A. (2006). Correction of Genetic Blood Defects by Gene Transfer. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_88

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_88

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics